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Summary

This progress report summarizes the work carried out during the period July 1 to December

31, 1990. During this period, work has been carried out to formulate near-wall models for the

equations governing the transtx_ of the temperature-variance and its dissipation rate. With these

equations properly modelled, a foundation is laid for their extension together with the heat-flux

equations to compressible flows. This extension is carried out in a manner similar to that used to

extend the incompressible near-wall Reynolds-stress models to compressible flows. In this report,

the methodology used to accomplish the extension of the near-wallReynolds-stress models is

examined and the actualextensionof the models for the Reynolds-stressequations and the near-

wall dissipation-rateequation tocompressible flows isgiven. Then the formulationof the near-

wall models for the equations governing the transportof the temperature variance and its

dissipationrateisdiscussed. Finally,a sample calculationof a flatplatecompressible turbulent

boundary-layer flow with adiabatic wall boundary condition and a free-stream Mach number of 2.5

using a two-equation near-wall closure is presented. The results show that the near-wall two-

equation closure formulated for compressible flows is quite valid and the calculated properties are

in good agreement with measurements. Furthermore, the near-wall behavior of the turbulence

statistics and structure parameters is consistent with that found in incompressible flows.
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1. Program Objectives

With the availability of near-wall Reynolds-stress [1] and heat-flux models [2], the time is

now ripe for their extension to flows where temperature cannot be considered as a passive scalar,

such as in a compressible flow. This means that the transport equations for the temperature

variance and its dissipation rate have to be solved simultaneously with the governing mean flow

and energy equations, the Reynolds-stress equations and the heat-flux equations in a second-

moment closure of the problem. Therefore, near-wall models for the equations governing the

transport of the temperature variance and its dissipation rate are also required, in addition to the

near-wall model for Reynolds stresses and heat fluxes. The present project attempts to accomplish

these objectives using the approach outlined by Lai and So [1,2] in their modelling of

incompressible near-wall Reynolds stresses and heat fluxes. More specifically, the present

objectives can be stated as follows.

(1) To extend the near-wall Reynolds-stress and heat-flux models of Lai and So [1,2] to

compressible flows and to modify the dissipation-rate equation so that it gives a correct

near-wallbehaviorforthe dissipation rate.

(2) To formulate a near-wall closure for the temperature-variance transport equation.

(3) To formulate a near-wall closure for the equation that governs the transport of the

dissipation rateof the temperature variance.

(4) To extend allthe above models tocompressibleflows.

(5) To validate these models using incompressible flow data, heat and mass transfer data and

compressible flow data.



2. Progress to date

In the past year, work has been carried out to accomplish the first four objectives listod

above. The extensions of the nc_'-wall Reynolds-stress and hut-flux models to compressible

flows have been cffc_od by formulating the compressible flow _:luations into a form similar to

their incompressible count_parts. Furthermore, the compressible dissipation function is split into

a solenoidalpartthatisnot influencedby compressibilityeffectsand adilamfionalpartthatistotally

dependent on theturbulentMach number. With thissplit,allclosuremodels could bc expressed in

terms of the solenoidaldissipationrate.Therefore the incompressible limitof the compressible

models could bc recovered in a straightforward manner. An existinghigh-Reynolds-number

dissipation-rateequation has bccn extended to describethe transportof the solenoidaldissipation

rateand theresultantequationhas bccn modified togivethecorrectnear-wallbehavior.This work

has been rcportod previously by So ct al.[3]. The same methodology isthen used to treatthe

incompressibleequationsthatgovern the transportof thedissipationrateof the turbulentkinetic

energy and thetemperature varianceand itsdissipationrate.These studieshave bccn completed

and a briefdiscussionisgiven below in Section3.

In addition,a validationof a near-wall,two-equation closurefor compressible flows has

bccn attempted. A compressible boundary layerwith a free-streamMach number of 2.5 on an

adiabaticflatplateisconsidered. The near-wall,two-equation closure for compressible flows

tcstodconsistsof solvingthemean compressibleflow equationsplusthecompressible form of the

modcllod turbulentkineticenergy and dilatationaldissipation-rateequations. A turbulentPrandtl

number isassumed for thisinitialvalidationof the two-equation closure.Once the two-equation

closure has bccn validatod,the turbulcnt-Prandtl-numbcrassumption can bc relaxed and the

equations thatgovern the transportof the temperature variance and itsdissipationratewill bc

solvedtogive thecompressibleturbulentheatflux.This way, the validityof the mrbulcnt-Prandtl-

number assumption could bc assessedtogetherwith the models forthe he.atfluxes.The calculatod
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mean velocity and temperature prof'des, wall shear and wall heat flux arc in good agre._mcnt with

nv.asuremcnts. F_, the turbulence statistics and their associated structure parameters near

the wall arc consistent with those obtained in incompressible flows. This study has been

completed and the results are presented in Section 4.



3. Near-Wall Compressible Flow Models

3.1 Mean Flow Equations

The compressible turbulent flow equations are obtained by applying Favre averaging to the

instantaneous Navier-Stokes equations which for Newtonian fluids can be written as:

_p
0 ,

¢)(pUi) i. __j (pUiUj) .. ___i + _i j_Xj '

_(pCpT) +_-_i(pCpTui)=-_--+ui_-'_i + _-'_Jg:_I'l+_x[_xi_ giJ_xj_Ui ,

(I)

(2)

(3)

lli_Ui _Ujl 9 _U k _.

where "cij- qaxj ÷ axi]" _" IA_-'_koij ,
(4)

u i is the ith component of the velocity vector, x i is the ith component of the coordinates and p, T,

P, I_, g, Cp are pressure, temperature and fluid properties, density, viscosity, thermal conductivity

and specific heat at constant pressure, respectively. Favre decomposition is applied to all variables

except p and p where conventional Reynolds decomposition is assumed. In other words

ui = (Ui) + u_ , (5a)

T = (O) + 0" , (5b)

p = ]5" + p' , (5c)

p = _- + p, , (Sd)
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whereu_and0" are theFavrefluctuationsandp' andp" arc theReynoldsfluctuations. If < > is

used to denote Favre-averaged quantities and the overbar the Reynolds-averaged quantities, then

the un'bulent equations become

m

m

+ _i (p"_.li)) --0,
(6)

i_xi+U _ _ U_iXi-I-('_i_-_Xj 4-{y_+_ij-_xj -6 'ij'_j ' (8)
4-(u"

where _t = _', lc = _- and Cp = _ have been assumed and

! 3

represent the mean and time-averaged fluctuating stress tensor, respectively. These equations can

be further simplified by assuming the turbulent flow to be stationary and by making use of the

mean momentum equation (7), the Reynolds-stress and turbulent kinetic energy, k - _uiui:,

equations to be derived later. The result is

_--:-_('_(U_') = 0 , (9)
oxi- -
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m

i}<_r>
(10)

(II)

I

As a first approximation, the underlined terms could be neglected compared to the terms retained in

(9) - (11). Thus formulated, the compressible flow equations are identical to the incompressible

flow equations. In the latter case, _" is constant and all the variables represent Reynolds-averaged

quantities.

In the following,themodelling of theequationsthatgovern thetranslxm of _(u_ui) isfh'st

presented. This isfollowed by the modelling of thc equations thatgovern the transportof the

dissipationrateof thcturbulentkineticenergy and thetemperaturevarianceand itsdissipationrate.

3.2 Modelling of the Reynolds-Stress Equations

The Fav_-averaged transportequationforthe Reynolds strcsscs_-(u_u_)could be similarly

derived as in the incompressible case [I]. That is,the ithfluctuatingequation is obtained by

subtractingthe mean momentum equation from the instantaneousequation. Repeat the same

procedure toobtaintbejthfluctuatingequation.Tbe ithfluctuatingequationisthenmultipliedby

tbejthfluctuationvelocityand vicev(a'sa.The two equationsarcthenadded togetherand averaged

ovca"time. Omitting allthealgebra,thefinalexactcquationis:
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(12)

SymbolicaUy, the above equation can be written as

Cij = D_j + D ij- P_j +_iJ + PiJ + Gij + Tij
(13)

With the exception of Gij and Tij, (13) is basically the same as its incompressible counterpart [1].

m

For an incompressible flow, u i ,= 0, and Gij = Tij = 0. Even under this condition, (13) fails to

reduce properly to the incompressible equation given by Lai and $o [1]. The reason is in the

*V w ,grouping of the terms (Dij - P£ij + _ij In order to achieve this incompressible limit, a re-

grouping of the terms in (D._jv - p-e_.j+ _ij)is necessary. If the viscous diffusion and dissipation

terms in compressible flows arc again defined similarly to their incompressible counterparts, or

Dij - _--_k aXk ]' (14)

El j---- 2V * )
_Xk_Xk , (15)

then the terms (D*jV -*- Peij + @ij) can be re-_ouped to #vc

D_j- p'-_j + *,j = D_- p'_j- p"_ + **ij
(16)

(17a)



(17b)

m

Note that(16)reducestoitsincompressiblecounterpartexactlybecause _)ui/_Xk --0 and _"_X k ------

0. For compressibleflows,an extraterm _'_ appearsin (16). In addition,threeadditionalterms

arefound in@_j. The term P'ed_isa dilatationalterm and could be interpretedas compressible or

dilatationaldissipation.This term isonly importantforcompressibleflows.

Itshould be pointed out thatOij is given by (17b) and, as a resultof thisparticular

partitioning,thereare severalextra terms resultedfrom compressibilityand variableviscosity.

However, athigh Reynolds number, dimensional arguments revealthattheseextracontributions

are not important. Ifpressure diffusionis furtherneglected,then the DiT, P_ij and O_j terms

would assume the same form as theirincompressiblecounterparts.Tberefore,the high-Reynolds-

number incompressiblemodelling of theseterms could be naturallyextended tothe presentcase.

However, a model forthe compressibledissipationterm _'ei_isrequiredinorder to complete the

closure.For high-Reynolds-number flows,thiscompressible dissipationcould be assumed to be

isotropic.As a result,thefollowingmodel isproposed:

_j = 32-Bij _c

- OU
_ - Y.. Y__

where - 3 i_Xk " (18)

The modelling of echas been attemptedby Sarkaretal.[4].They arethe firsttorealizethat

the contributionof the dilatationaldissipationterm isimportant for supersonic and hypersonic

flows. A simple algebraicmodel, which isbased on an asymptoticanalysisand adirectnumerical



_ ---0.25 IVI_: ,

simulation of the simplified governing equations, has been proposed for _c. Their proposal could

be modified for the present closure as

(19)

- 2k 2, - is the dissipation of k and T is the local mean speed of sound.

Therefore, M t is the local turbulent Mach number. It should be pointed out that Sarkar et al.'s

definition of _ is four times larger than the present definition due to a different splitting of the

terms in (16).

Once the high-Reynolds-number closure is obtained, the next important issue is to construct

an asymptotically correct near-wall closure. To do so, near-wall behavior has to be analysed for

each term in (13). This analysis is similar to the incompressible case except one more fluctuation

p' has to be expanded and substituted into the exact equation. The expansions are:

u" - a I y + a2 y2 + ...

v" = bl y + b2 y2 +...

w"=c 1 y +c2 y2 +...

p'=e I y + e2 y2 +...

(20)

It should be pointed out that, although the velocity expansions are physically correct, the expansion

for density is an assumption. In general, the density fluctuation is not necessarily zero at the wall.

Since p' is assumed to be essentially zero over the whole field in Morkovin's hypothesis, the

present approach could be viewed as a partial relaxation of that assumption.

For incompressible flows, b I = 0 is obtained by imposing the incompressibility condition

and becomes a crucial condition in near-wall analysis. This important condition holds the key to

the present extension of the near-wall incompressible models to compressible flows. In order to

show that b I indeed vanishes under these conditions, the continuity equation for density fluctuation

p' is fast derived, or
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Expansions (20) are then substituted into the above equation. If (U_ = 0 at the wall is used, it can

be easily verified that b I -- 0 is still a valid condition for compressible flows, irrespective of the

thermal boundary condition. Therefore, the assumed p' expansion facilitates the modelling of

compressible flows because all the expansions for compressible flows have similar forms as their

incompressible counterparts except the extra c_ term which needs to be analyzed. Using the

definition for ¢_, it is easily verified that _ is of order y2 for the 11, 22, 33 and 13 components,

while it is of order y for the 12 and 23 components. The high-Reynolds-number model proposal

(19) provides higher order behavior when a wall is approached. Therefore, it is proposed that

model (19) could be extended to near-wall flow without modification, while the near-wall balance

provided by the exact _ is taken into consideration by combining it with the _j tenn.

On the other hand, the same near-wall behavior as its incompressible counterpart is deduced

for cij and the incompressible model [2] could be extended to compressible flows. In other words,

_j could be modelled by

_ij= _(1 fw,l)_Sij _ " "- + fw,l_((uiuj) + (U[Uk)nknj + (U_Uk)nkn i + (ukUm)nmnkninj)

/(1 + 3(umUk>nmnk/2k ) (22)

Near-wallanalysisagainshows thatturbulentdiffusionisa higherorderterm neara wall

and itshigh-Reynolds-numbermodel could be used becauseitdocs not affectthenear-wall

balance.Hanjalicand Launder's[5]model issuggestedforthisterm. For compressibleflows,

theirmodel couldbemodifiedtogive

+ _ (u_um)_}p'(U;_xmU_)+P'(u; u_n)_P'iu_)) ) (23)
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The near-wall behavior of O_j and _-_j together could be evaluated by using the exact

equation (13). One differenc_ from incompressible flows is the appearance of Gij and Tij in (13).

Therefore, the near-wall behavior of Gij and Tij has to be analysed fn'st before discussing the

models for the combined term (O_j + p'f_). The appearance of mean pressure in the Gij term

makes the analysis difficult. To circumvent this difficulty, the mean momentum equation (10) is

substituted and the final analysis shows that the combined (Gij + Tij) term has the following near-

wall behavi(r, namely,

GII + Tll --_ O(y 2) ; G33 + T33 _ O(y 2) ; GI3 + T13 --_ O(y 2) ,

G12 + TI 2 _ O(y2) ; G23 + T23 --_ O(y2) ; G22 + T22 --_ O(y 3) (24)

This means that, to the lowest order, the near-wall behavior of _)_j + p'f-,icj is similar tO the

incompressible case [2]. Therefore, the incompressible model could be extended to compressible

flows as follows:

1 2
= ,

_>ij + P'F'i_ - _>ij + fw,1 _ij,w ,

+a<u >1 '

C - £- ((u; u_) - 32"5,jk) --- £- ((u; u_)nkn j_iJ'w =" lPk Pk + (_ uk)nkni)+ ¢z* (Pij - 3_iJP _

(25)

(26)

(27)

(28)

with Pij - P((u; uk) _ + (u; u") _U'_/= k aXk ! '
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A

and P = Pi./2. The re-grouping suggested in (14) to (17) is now obvious, because the

incompressible models could be straight-forwardly extended to near-wall compressible flows.

The proposed model still fails to close the equation because of the presence of Tij and Gij

W

which are mutiplied by the term u k. Therefore, it is necessary to shed some fight on the modeling

m

of uk , which is equal to zero for an incompressible flow. Using Favre averaging, it can be shown

that -p'u_ = pu k . In other words, _ = - p'_ /p . Previous proposals for -p'u are based on

the gradient u'anslx_ assumption; namely,

where vt = C._ k2.
E

adopt the proposal,

However, a more elaborate and probably 'better' way to model the term is to

(30)

Since these proposals are not consistent with the assumption of non-gradient transport, it is

w

suggested that the following form is used to evaluate u k instead, or

<e> ' (31)

where 13equals to unity for ideal gas.
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3 3 Modeling of the Dissipalion-Rate Equation

The exact u'ansport equation for the dissipation rate of turbulent kinetic energy can be

similarly derived as in the incompressible case. Omitting all the algebra, the exact compressible

equation for e is given by

_ I°_- k _X i _Xi_

[,a.;
-,p ÷ '_xi_Xk]

Oxk_xj OXk Oxj Oxj

- 2V_x k _Xj _X k D V _X k _X k
(32)

It has been pointed out that the e-equation is the most difficult to model even for

incompressible flows [3]. Obviously, due to a lack of measurements in compressible flows, a

rigorous modelling of the compressible e-equation is not possible at the present time. The best

suggestion probably is to extend the incompressible model to compressible flows. There are two

important extra terms resulted from compressibility effects which will otherwise disappear. These

tL_nls arc"

m N

2V ---L-2--_L .
S_1 =- 2v oxrc,"---X-xiand $a = i_XkOXkOXj (33)

Along the suggestion of Jones [6] for high-Reynolds-number flows, the above terms could be

modelled as

S_1 =. Ct3 _u_ OP and S_ = C_ pe O(Uk)OXk " (34)

13



For near-wall flows, these models require modifications because it is obvious that S_I

becomes infinite when a wall is approached. A simple way is to replace e by _" = _ - _ in the

above expressions where e w is the value of e at the wall. In summary, the e-equation for a

compressible flow could be modelled as

i " aP
(35)

The incompressible form of this equation is identical to that proposed by Lai and So [1].

Unfortunately, the incompressible equation fails to give the correct e behavior near a wall. So et

al. [3] have recently carried out a study to investigate the near-wall behavior of the incompressible

transport equation for e. They found that if the fe and fw,2 terms in (35) are modified to give

- Ca t"2 , where f2 is given by

-_[l + 2f.,2.3 fw,2 Fa_.]f2
Ca 2Ca _J ' (36)el

then the predicted e behavior in the near-wall region is in good agreement with direct simulation

data [7-9]. Here e* - E - 2v-'k/y 2. Consequently, the terms,

7 1
-Ce2f_ k'_+fw,2P _e2" 2 - _ ,

in (35) is replaced by [-Ce2f2 _] and the resultant e-equation is asymptotlcally correct as a wall

is approached.

3.4 Modelling of the Teng_rature Variance and its Dissipation Rate Equations

In near-wall modelling of the compressible Reynolds-stress and dissipation-rate equations,

effort is made to recast the equations to a form similar to their incompressible counterparts. This

14



means that all terms with explicit compressibility effects are grouped together so that when the

incompressible limit is approached, they will go to zero identically and the other terms in the

compressible equations will approach their corresponding terms in the incompressible equations.

Thus formulated, the incompressible near-wall models could be extended to compressible flows in

a straight forward manner. The only new models required are those for the terms with explicit

compressibility effects. However, this approach, attractive though it seems, requires the

knowledge of well tested incompressible near-wall models. For the Reynolds-stress and

dissipation-rate equations, the incompressible near-wall models are provided by Lad and So [1].

As for the heat-flux and temperature variance and its dissipation-rate equations, a complete

incompressible near-wall closure is not available. Lai and So [2] proposed a near-wall closure for

the incompressible heat-flux equations. However, they did not propose near-wall models for the

temperature variance and its dissipation rate equaations. In this section, an attempt is made to

model these two equations in the near-wall region. An incompressible closure is fu'st sought.

After these equations have been properly modelled for near-wall flows, they and the near-wall

heat-flux equations [2] will be used as a base for extension to compressible flows.

If the temperature variance is denoted by 02 and the dissipation rate of 02 is def'med by

_0 _0

=_Xk ()Xk '
(37)

D

where a = _JpCp is the thermal diffusivity, then the exact equations governing 02 and F.0 are given

by

D0 D0 m
+ 20So , (38)

()X k ()X k

15



B

OXk OAk _ OXkl

_0 5U k 5(_

5Xj 5Xj 5Xk

• aO B20

- ,,o -xj5xk3xj

- 20_ 50 50 5Uk 20_

0

50 5u k 50

5Xj 5Xj _k - 5x xj/ + , (39)

where U i is the component of the Reynolds-averaged mean velocity, u_ its fluctuating velocity

component, 0 is the fluctuating temperature and S0 is the source term involving the fluctuating

viscous stress and fluctuating velocity gradient.

It is clear from the exact transport equations (38) and (39) that the relative importance of the

different terms in the 02 and e0 budgets is similar to those of the corresponding terms in the

turbulent kinetic energy and dissipation-rate equations. Several experimental studies have shown

that the close similarity between k and e and 02 and e 0 budgets do exist. For example, the

measurements by Krislmamoorthy and Antonia [10,11] for a turbulent boundary layer indicated

that the thermal and velocity fields resemble each other. Particularly, the measurements of _ have

enabled the temperature dissipation time scale to be estimated in the near-wall region and

approximately the same distribution as the velocity dissipation time scale was obtained.

Most proposals used to model the 02 equation have adopted a gradient-type representation

for Uk02 . In order to be consistent with the velocity field, the following form could be suggested

502

As far as the near-wall flow is concerned, asymptotic analysis shows that this turbulent diffusion is

negligible compared with the dissipation and molecular diffusion terms in (38). Furthermore,

experimental measurements [10,1 I] support this assumption. Consequently, (40) could be easily

extended to near-wall flows. The diffusion coefficient C_s2 could be chosen as 0.11 as

recommended by Launder [ 12].

16



The more important term requiring approximation in the _. equation is the dissipation rate

¢0. In most previous studies, this dissipation rate is algebraically related to 02 through the use of a

time-scale ratio R [12,13] and the time-scale ratio was chosen to be 0.5 to 0.8 depending on the

flow cases considered. Unfortunately, measurements for the decay of temperature and velocity

fluctuations behind a heated grid suggested that the time-scale ratio has a rather wide scatter and is

not sufficiently constant to serve as a general method for the determination of 80- The alternative

then is to determine _ from its own transport equation which is given in (39).

The problem of closing (39) is much more difficult than that of the 8-equation because there

are more time and generation-rate scales in the e0-equation. For high-Reynolds-number flows,

dimensional analysis suggests that only the 6th and 7th terms on the RHS of (39) are important.

These terms bear a close resemblance to the corresponding terms in the e--equation. Several

proposals have been made to close the _0-equation for high-Reynolds-number flows [14-18].

Among them, the closure suggested by Jones and Musonge [14] takes the following form:

=D o + Va)- , (41)

with P_O = C--d2f'PO + Cd3 _ k_ , (42)

Z_e = C_ _ + Cd5 £kSe , (43)

00 m _Ui

with PO = " UkO_ and P = - UiUj _Xj
(44)

Note that in the modelling of the terms, Pe0 and Ze0, involving the generation and destruction of

fine scale turbulence interactions, both the thermal and velocity time scales are used. In the

second-order models of Newman et al. [15] and Eighobashi and Launder [16], however, only the

thermal time scale and the thermal production rate are used for Peo, i.e.,

17



P_ = Cdl _z Pe (45)9

e

whileinthemodel ofNagano and Kim [17],

P_0= C01 --_ Po + Ca3_o P (46)
0

is proposed. It is worth noting that recently Yoshizawa [18] is able to arrive at the same form as

(43) and (46) for the _ closure by using the statistical results from a two-scale direct-interaction

approximation. Even the model constants predicted from their direct-interaction approximation are

close to the ones used by Nagano and Kim [17], Newman et al. [15] and Elghobashi and Launder

[16].

Although itisgenerallyagreedthatboth the temperatureand velocitytime scalesand

production rates affect e0, all the above models only take one of the time scales and production

rates into consideration. Therefore, it would seem that a more general form for Pe0 would be

P_o = Cdl _-_2Po + Cd_ Po + C-d3_ (47)
0

where the values of the model constants Cdl to Cd5 are to be discussed later.

Finally,toclosethe¢0-equation,theturbulencediffusion,i.e.the2nd term on theRHS of

equation (39), could be similarly modelled through gradient-type approximation as the _--equation;

namely,

J _xjl (48)

m

In summary, the high-Reynolds-number 02 and _0 equations could be modelled in the

following form:

18



I_ -_--'k'kC_, _ e _j] + uk a--'_'k-2¢'° ' (49)

Since a near-wall closure is to be formulated, an extension of the above equations to near-

wall flows is required. This could be achieved in a manner analogous to thc modelling of the k and

E equations. First of all, the viscous diffusion terms should be included in the equations, that is,

 Xk]' (51)

(52)

With the addition of thc viscous diffusion term to (49), it can be shown that the modelled equation

is in balance to the lowest order in the near-wall region. Essentially, the balancc is provided by

molecular diffusion and viscous dissipation. This can be verified by the use of the cxpansions (20)

and (39) for thc definition of e0. In view of this, the _'2 equation, just likc its counterpart k

equation, needs no further modifications for near-wall flows.

A similar near-wall asymptotic analysis of the E0-equation shows that the molecular

diffusion term reaches a finite value at the wall and is dominant in the near-wall region. Near-wall

analysis of other terms in (39) reveals that the generation terms are of higher order in y, while the

destruction terms approach infinite values as a wall is approached because ¢ and F.e are f'mite and k

and _2 arc zero at the wall. This difficulty could be removed by replacing _ and F.O by _ and _ in

(43), or

(53)
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with  ef o-cx and (54)

"l'nus modified, the near-wall behavior of the modelled eo-equation has the property that molecular

diffusion and destruction become dominant when a wall is approached. This behavior is consistent

with experimental observations and is analogous to the behavior of the e-equation.

Despite the above modifications, the molecular diffusion and destruction terms generally arc

not in balance near a wall. However, a near-wall analysis similar to the _-equation could be carried

out for the e0-equation to ensure that certain near-wall constraints axe met. This can be

accomplished by expanding the fluctuating quantities according to (20). Using the definitions of

02 and _ and the substitution of (20), the following is obtained,

0 2 = 2A y2 + 2B y3 + C y4 +...
t

(55)
eo = a (2A +4B y+Dy2+...)

9

where A, B, C and D are related to the time average of the coefficients d 1, d2, .... Further analysis

of the 0-2 equation at a wall yields

D

E0 = _ ¢)202ax-- k (56)

Following the suggestion of Shima [ 19] for the e-equation, a transport equation of the right

hand side of (56) could be derived and its behavior analyzed at a wall. This results in

(a i)X_Xk/- ¢)Xm(_Xm _ _Xk_Xk] " (57)

These two equations indicate that 2x3e0/'Ot and the right-hand side of (57) should possess the same

near-wall asymptotic behavior. This constraint could be used to further modify the _ equation for

near-wall flows.
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Sinc,¢a general analysis is difficult, the following analysis is restricted to the case where the

averaged quantifies are only functions of y and t (distance normal to a wall and lime). The near-

wall asymptotic behavior of the right-hand-side of (57) could be easily obtained by the substitution

of expansions (20) and (55) and the result is (-4ct2D+24ct2C). If the aea/Ot equation is

considered, it could be shown that a closure is required such that the left-hand-side of (57) would

give the same value at the wall. It is sufficient to point out that an extra term _e0 is required for the

eo equation in order to satisfy the above constraint and it could be deduced as

k Co" 02 ] '
(58)

y2

To verify that (58) indeed satisfies the modelled _/'Ot behavior of (-2o_2D+12o_2C), the

followingnear-wallexpansionscould be obtainedby using (20)and (57):

= f2X"y + (B/f2K) y2 + 2(C_,/(g_y3. (4B2/f_ y3 + O(y4)

ZA

= +O(y).
02 2A

In summary, the final 02 and e0 equations could be modelled as:

(59)

(6O)

(61)

(62)

(63)
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Dee a

+ + - .C_ k % +¥_ (64)

By considering the data obtained in decaying homogeneous scalar turbulence and

temperature variance measurements in grid turbulence, Jones and Musonge [14] was able to

determine the following model constants: Cd2 = 1.7, Cd3 = 1.4, Cd4 = 2.0, CO5 = 0.52 with the

Cdl term set equal to zero. Yoshizawa [18], on the other hand, estimated these constants using

direct interaction approximation. His results are: Cdl = Cd4 = 1.2, Cd3 = Cd5 = 0.52 and Cd2 =

0.0. Newman et al. [15] optimized the model constants to give Cdl = 1.0, Cd4 = 1.01, Cd5 = 0.88

while Elghobashi and Launder [16] proposed the following values, Cdl = 0.9, Cd4 = 1.1, Cd5 =

0.80 with the Co2 and Cd3 terms excluded. Nagano and Kim [17], however, adopted the same

values as Elghobashi and Launder [16] except that the Cd3 term is included and Cd3 ffi0.72 is

suggested. It can be seen that all proposed constants are approximately of the same order of

magnitude and more experimental and numerical studies are required to determine their proper

values.
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4. Compressible Boundary Layer on an Adiabatic Plate

4.1 Governing Equations and Turbulence Closure

The compressible boundary layer on an adiabatic flat plate is considered. If the usual

boundary-layer approximations are made to simplify the governing equations, then equations (9) -

(II)can be writtenas

-o ,

a(u)_ -,a<u)7.a<u)_<v)_ =_<u)-_-+ _+mj-E-yj

_-y

(65)

(66)

(67)

where the gradient-transport assumption has been used to relate the turbulent momentum and heat

fluxes to the mean gradients of velocity and temperature, respectively. In the process, a turbulent

viscosity is assumed for compressible flows. This is a first attempt to validate the k-¢ closure

deduced above for near-wall compressible flows, therefore, a constant turbulent Prandfl number is

assumed so that the turbulent heat conductivity cocfficient can be related to the turbulent viscosity.

The k-¢ closure used to closed the above set of equations is given by the contraction of the

modelled form of (12) and (35). Their exact form will be given below. It should be pointed out in

here that the energy equation (67) is written in terms of the total enthalpy (I-I), which is the sum of

the enthalpy (h), the mean kinetic energy ((U>)2/2 and the turbulent kinetic energy k.

The tm'bulent viscosity _ is related to k and ¢ by C3tfttp-k2/¢, while k and ¢ are obtained by

solving their respective transport equations. A modelled k-equation valid all the way to the wall

can be deduced by contracting (12) after applying the models proposed in (22), (23), (25) and (26)
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T c _j, respectively. On the other hand, the near-waU e-equation is by (35).for £ij, Di_, £ij and

Again, the boundary-layer approximations are used to simplify these equations and the results are:

' (68)

(69)

In (69), the near-wall correction of So et al.[3] has been substitued. The reason is the more correct

predicted behavior of 8 in the near-wall region. The definitions of _', ¢* and ftt are given by

£-£
(7O)

e* = e - 2_-k-
y2 ' (71)

.ftt =(1 + 3.45/f]_tanh(y+/120) , (72)

where R t = k2/-9"E, y+ = yuz/V, uz = _(Xw/p) and "_" is defined by

m

Op_ _
(73)

Finally, the model constants are chosen as: C.tt = 0.096, Cel = 1.50, Ce2 = 1.83, o k = 1.01, oe =

1.45, op ffi 4.0 and y = 0.18182, and the turbulent Prandtl number Pr t is assumed to be 0.7. The

molecular Prandtl number Pr for air is calculated assumming it to be temperature dependent and the

Sutherland law is used to evaluate the fluid viscosity at the appropriate temperature.
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The boundaryconditionsarc noslip at thewall for the velocities and zero heat flux at the

wall for the enthalpy. At the edge of the boundary layer, the free-stream conditions are assumed

for both the stream velocity and the enthalpy. Thus formulated, the above equations and the

appropriate boundary conditions can be solved numerically using the boundary-layer code

developed by So et al.[3].

4.2 Results and Discussion

The closure is used to calculate a flat plate supersonic boundary-layer flow [20], where the

thermal wall boundary condition is adiabatic and the free stream Mach number is 3.701. This case

is also calculated using a near-wall two-equation closure proposed in Ref. 21. Furthermore, some

mean flow data of this case can be found in Ref. 22. Since it is a flat plate boundary-layer flow,

there is no streamwise pressure gradient. For comparison purposes, the Cfdata is taken from Ref.

20 while the other data is obtained from Ref. 22, where Cf = 2Xw/(PwUe 2) is the skin friction

coefficient. Here, the subscripts w and • are used to denote wall and free stream condition,

respectively. In this case, the reported Cf at Re x = 1.939x107 is 1.246x10 -3. The two-equation

model calculations of Ref. 21 are also compared with the present results whenever possible. This

way, the strength and weaknesses of the near-wall closure could be assessed carefully.

The present objectives are to validate the two-equation near-wall closure and to analyse the

calculated near-wall asymptotic behavior. Near the wall, the flow is essentially dominated by

viscosity and the Math number is very low irrespective of the free stream Mach number.

Consequently, the near-wall asymptotic behavior of a flat plate compressible boundary layer

should be quite similar to its incompressible counterpart. One of the present objective is to

determine the extent of validity of this similarity, if indeed such a similarity exists. In other words,

the wall behavior of k+/y +2 = constant, k+/y+2c + = 0.5, -u"-_/y +3 = constant and ._"ff+/y+3 =

constant should also be valid for flat plate compressible boundary layers. Here, the wall friction

velocity is used to normalize k, e and -uv while the free stream quantifies are used to normalize -v0
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to give the dimensionless quantifies. The extent of the similarity could then be determined from the

y+ value where these relations cease to be valid.

The present calculations are carried out with a thermal energy equation that is identical to that

used in Ref. 21. This means that the term, a[_t(U)_(U)/_y]/_y, in (67) is neglected.

Furthermore, k is omitted in the definition of 0"t). The influence of these terms on the calculated

results is being investigated at present. However, their overall effects could not be large because

these terms are one order of magnitude smaller than the terms retained in the final equation. The

rationale for using the same thermal energy equation as Ref. 21 is to better assess the effects of the

additional compressible terms in the k and e equations.

The calculated Cfat the same x location is 1.253x10 -3. This represents an error of <0.6%

compared to the reported value [20,22]. The mean flow results are plotted in Figs. 1-3. In these

figures, the measurements and the calculations using the model of Ref. 21 are also shown for

comparison. There are several ways to define y+ for compressible flows. Here, it is defined with

the fluid propreties evaluated at the wan. The mean velocity (U +) plot is shown versus lny + (Fig.

1), while the mean temperature ((O)/(O)e) and total enthalpy ((I-I)/(I-I)e .) plots are shown versus y+

(Figs. 2 and 3). It can be seen that the present results are in good agreement with data and with the

calculations obtained from the model of Ref. 21. There is a slight discrepancy in the mean

temperature and total enthalpy profiles near the wall. The present results give a fuller profile for

both propreties. On the other hand, the model of Ref. 21 give a slight overshoot for the total

enthalpy profile inside the boundary layer. This, of course, is not reasonable and could be the

reason for the under-prediction of (H) near the wall. One of the reason could be the less correct

near-wall turbulence model [21] compared to the present closure. More will be said about this

point when the near-wall propreties are examined.

The near-wall distributions of the turbulent quantities are plotted in Figs. 4-7. In these plot,

y+ is defined using local fluid propreties. Since there are no measurements in this region, the
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comparisons are made with the calculations obtained using the model of Ref. 21 whenever

possible. It can be seen that the present prediction of _'+ in the near-wall region is totally different

from the model of Ref. 21. The present calculation is similar to that obtained by Spalart [9]

through direct simulation of the Navier-Stokes equations. It is essentially identical to the

distribution obtained by So et al. [3] for the case of an incompressible boundary layer. On the

other hand, the calculation of ¢+ is about the same for both models for y+ > 35. This means that

the near-wall closure of Ref. 21 is not quite correct and could contribute to an incorrect prediction

of H in the near-wall region. Further evidence that the near-wall model of Ref. 21 is not quite

correct could be gleaned from the near-wall plots of k+, -uv + and -v0 + (Figs. 5-7). The model of

Ref. 21 gives a k+ distribution that is quite a bit lower than the present calculation. For example,

the peak value of k + is calculated to be about 3.1 using the model of Ref. 21 (Fig. 5), while the

present calculation gives a value of about 5.2. This latter value is in agreement with that obtained

by Spalart [9] and So et al. [3] for an incompressible boundary layer. Furthermore, the drop of k +

after the maximum is relatively steep for the present closure, while it is essentially constant for the

model of Ref. 21. This behavior is also incorrect compared to incompressible flow data. The low

value of k + suggests that turbulence is being severely damped in the near-wall region and this, in

turn, could influence momentum and heat transport and could possibly lead to lower values for

-uv + and -v0 +. The overall distributions of k+, -uv + and -v0 + are shown in Figs. 8-10,

respectively. It can be seen that the model [21] prediction of k + in the outer region agrees well

with the present result.

Finally, the near-wall asymptotic behavior of the turbulent propreties are examined in Figs.

11-14. The slope of k + versus y+2 is indeed constant and is equal to 0.094 (Fig. 11); a value that

is about 4% lower than that obtained by So et al [3]. Therefore, it follows that the wall value of e+

is 0.188 and again is in very good agreement with the incompressible value [3]. On the other

hand, the ratio k+/y+2E + is 0.501 (Fig. 12) and verifies that expansions (20) are valid for

compressible flows. This implies that there is great similarity between incompressible and

F
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are dso constant and are very small (Figs. 13 and 14). These results are consistent with

incompressible flow calculations. However, the region in which the slopes are constant is limited

to y+ -- 1.0. This compares with a region of y+ - 2.0 for incompressible flows. Therefore,

compressibility tends to decrease the region in which expansions (20) is valid, but it fails to

eliminate this region altogether. Perhaps, when the free stream Maeh number is sufficiently high,

this viscosity dominated near-wall region will become so thin that it could be considered to be

e_sentially non-existent.

It should be pointed out that the above results are obtained with a Ce2f 2 = 1.83f2(1.0 +

_M_ where _ is determined to be 0.0044 based on a series of calculations at different Moo. One

could interpret this to mean that Ce2 is Mach number dependent, or it could be assumed that f2 is

influenced by Moo. Based on the physics of near-wall flows, it would seem reasonable to assume

f2 to be dependent on Moo. This assumption would keep intact the closure's ability to predict

decaying turbulence in a homogeneous field. Another point to note are the additional compressible

terms in (68) and (69). If these additional terms are neglected, the calculated near-wan behavior is

very much like that given by Ref. 21. In other words, these terms are very important and are

probably solely responsible for the correct prediction of compressible turbulence in the near-wall

region. This means that compressiblility effects on the turbulence field could not be correctly

modelled by a simple extension of the incompressible equations to compressible flows. The

additional terms in the turbulence equations are partly responsible for the compressibility effects.

Therefore, these terms should be retained in the modelled equations if the compressibility effects

were to be accounted for properly.

4.3 Conclusions

The present calculations and comparisons help bring out the following points. These are:

(i) Morkovin's postulate [23] is justified as far as the calculation of the mean field is concerned.

On the other hand, the calculation of the turbulence field is not quite correct if compressibility
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(iii)

(iv)

effects were assumed to be solely accounted for by the variable mean density. This is

particularly true in the near-wall region where Morkovin's postulate would lead to a drastic

under-prediction of the turbulence propreties.

The additional compressible terms in the k and e equations play a significant role in the

calculation of near-waU turbulence. If these terms are neglected, compressibility effects on

turbulence could not be accounted for properly and the result is under-prediction of the

turbulence propreties.

These additional terms are responsible for providing the correct near-wall asymptotic

behavior for the turbulence propreties. With their inclusion, the near-wall asymptotic

behavior of compressible flows is found to be similar to that of incompressible flows. This

result is reasonable because viscosity dominates in the very near-wall region.

The expansions (20) are found to be valid for the present calculations. Their validity for

other thermal boundary condition remains to be verified.
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5. Plans for Next Period

The plans for the next period are:

(i) To further validate the compressible near-wall k-¢ closure, such as applying it to calculate

other types of boundary-layer flows.

(ii) To validate the compressible near-wall Reynolds-stress closure by applying it to calculate the

boundary-layer flow on an adiabatic plate and compare the results with measurements and the

calculations of the compressible near-wall k-e closure. In both calculations, a constant

turbulent Prandfl number is assumed. This assumption will be relaxed after the near-wall

compressible heat-flux models are formulated and their incompressible counterparts are

properly validated.

(iii) To validate the incompressible near-wall 02-e0 closure using plane channel flow data with

heat transfer. The data sets are chosen from direct simulation calculations as well as from

measurements. They will cover both types of boundary conditions; that of constant wall heat

flux and constant wall temperature.
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